Thin films are ubiquitous in modern technology, forming the functional basis of end products used in consumer electronics, high-end energy harvesting systems, and much more. Ensuring the quality of materials deposited in minuscule layers, often approaching nanoscale thicknesses (nm), is paramount in quality assurance and control (QA/QC). Although there are many quality benchmarks in thin film engineering, film thickness is one of the most critical. Additionally, issues with film thickness can also cause problems with the costs and processes associated with coating.
MicroRaman spectroscopy is a light scattering technique that utilizes a Raman microscope spectrometer to analyze live cells. The analysis is conducted by identifying molecules and their functional groups. It is a technique based on Raman spectroscopy, where the interaction between light and matter is studied after the light has been scattered. MicroRaman spectroscopy utilizes a more specific Raman spectrometer, and throughout this blog post, we will look at the equipment associated with MicroRaman spectroscopy in-depth.
Raman microscopy is an extremely powerful analytical method. Combining the unique chemical identification capabilities of Raman spectroscopy with traditional confocal microscopy opens an array of applications in a wide range of fields. But what is a Raman microscope spectrometer, and when might you use one?
UV-Visible-NIR microspectrophotometry is a non-destructive method used to measure the spectra of microscopic samples or microscopic areas. Depending on the setup, a microspectrophotometer may obtain a wide range of signal types from sample areas, including absorbance, fluorescence, polarization, reflectance and transmittance.
Microspectroscopy, also known as microspectrophotometry, is a powerful imaging tool that combines the microscale imaging capabilities of a conventional microscope with the analytical capabilities of a spectrometer. Essentially, a microspectrophotometer is used to measure the molecular spectral emissions of samples on much smaller scales than a conventional spectrometer. This enables detailed materials characterization at the microscopic level. Naturally, microspectroscopy can help researchers resolve numerous challenges in research and production applications.